The smoothing effect of the ANOVA decomposition

نویسندگان

  • Michael Griebel
  • Frances Y. Kuo
  • Ian H. Sloan
چکیده

We show that the lower-order terms in the ANOVA decomposition of a function f(x) := max(φ(x), 0) for x ∈ [0, 1], with φ a smooth function, may be smoother than f itself. Specifically, f in general belongs only toW d,∞, i.e., f has one essentially bounded derivative with respect to any component of x, whereas, for each u ⊆ {1, . . . , d}, the ANOVA term fu (which depends only on the variables xj with j ∈ u) belongs to W τ d,∞ , where τ is the number of indices k ∈ {1, . . . , d} \ u for which ∂φ/∂xk is never zero. As an application, we consider the integrand arising from pricing an arithmetic Asian option on a single stock with d time intervals. After transformation of the integral to the unit cube and employing also a boundary truncation strategy, we show that for both the standard and the Brownian bridge constructions of the paths, the ANOVA terms that depend on (d+1)/2 or fewer variables all have essentially bounded mixed first derivatives; similar but slightly weaker results hold for the principal components construction. This may explain why quasi-Monte Carlo and sparse grid approximations of option pricing integrals often exhibit nearly first order convergence, in spite of lacking the smoothness required by the conventional theories.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smoothing Spline ANOVA for Variable Screening

Smoothing Spline ANOVA is a statistical modeling algorithm based on a function decomposition similar to the classical analysis of variance (ANOVA) decomposition and the associated notions of main effect and interaction. It represents a suitable screening technique for detecting important variables (Variable Screening) in a given dataset. We present the mathematical background together with poss...

متن کامل

The smoothing effect of integration in Rd and the ANOVA decomposition

This paper studies the ANOVA decomposition of a d-variate function f defined on the whole of Rd, where f is the maximum of a smooth function and zero (or f could be the absolute value of a smooth function). Our study is motivated by option pricing problems. We show that under suitable conditions all terms of the ANOVA decomposition, except the one of highest order, can have unlimited smoothness...

متن کامل

Smoothed ANOVA Modeling

32.1 Smoothed ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586 32.1.1 Zhang et al.’s SANOVA proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586 32.1.2 Maŕi-Dell’Olmo et al.’s SANOVA proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . 588 32.2 Some Specific Application...

متن کامل

Smoothing Spline ANOVA for Exponential Families , with Application to theWisconsin Epidemiological Study of Diabetic Retinopathy

Let y i ; i = 1; ; n be independent observations with the density of y i of the form h(y i ; f i) = expy i f i ?b(f i)+c(y i)], where b and c are given functions and b is twice continuously diierentiable and bounded away from 0. Let f i = f(t(i)), where t = (t 1 ; ; t d) 2 T (1) T (d) = T , the T () are measureable spaces of rather general form, and f is an unknown function on T with some assum...

متن کامل

Smoothing spline analysis of variance approach for global sensitivity analysis of computer codes

The paper investigates a nonparametric regression method based on smoothing spline analysis of variance (ANOVA) approach to address the problem of global sensitivity analysis (GSA) of complex and computationally demanding computer codes. The two steps algorithm of this method involves an estimation procedure and a variable selection. The latter can become computationally demanding when dealing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Complexity

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2010